Fall 2019 ME459 Final Project Report
University of Wisconsin-Madison

Coronavirus Spread Simulation

Jacob Nellis

December 14, 2019

Page 1 of 13

Abstract

This report documents the creation of a Covid-19 Community Spread simulation. The motive behind
making this simulation is to give users the ability to see how different parameters such as social distancing
and social network contacts affect the outcome of a pandemic. The final simulation gives users the ability
to create rational conclusions about different simulation parameters that accurately reflect choices that
individuals and society as a whole must make in the real world.

Link to Git Repository:

Here is my link to my entire class git repository:
https://euler.wacc.wisc.edu/jacob-nellis/me459-jacob-nellis.qgit

Here is a link to my FinalProject folder in my class git repository:
https://euler.wacc.wisc.edu/jacob-nellis/me459-jacob-nellis/tree/master/FinalProject

Page 2 of 13

https://euler.wacc.wisc.edu/jacob-nellis/me459-jacob-nellis.git
https://euler.wacc.wisc.edu/jacob-nellis/me459-jacob-nellis/tree/master/FinalProject

Contents

O = o L= LT o) (0] 00T 0] [4
N o (0] o] [=T 0 0 JES) F= =] 1 0]] SRR 4
K T [V 4 To] oo (1Yot 1) £ o o SO 4
Simulation Parameters and Data COHECHIONc..coiiviiiiiii e 4
]G L= (0] T O 0T L= 5
(O =T 11 £ oL TR 7
A A TS0 =122 (0] o I 7
4. Overview of results and demonstration OF PrOJECT...........coviririiiiiiere i 8
TR B 1= 1LY =T =1 0] (=TSR 11
6. USe Of MEA459 KNOWIEBUGEoviiiiiiiiiiiieieieeste bbbttt 11
7. Conclusions and FULUIE WOTKoouiiiieiiiiciii ettt sttt sbb e s sbb e e s bae e e sbeeeens 12
RS = (T Lo 13

Page 3 of 13

. General information

Mechanical Engineering, UW-Madison

Accelerated MS (1 year, class-based program)

Group Members:
o Jacob Nellis

4. Statement of Release of Code:

o | release the ME459 Final Project code as open source and under a BSD3 license for
unfettered use of it by any interested party.

WP

2. Problem statement

Covid-19 has had a huge impact across the entire globe over the past year. Between writing the
proposal for this project and today, the U.S. has seen an additional 7 million infections and 71 thousand
deaths [1]. The daily life of an average American today would have seemed almost unimaginable a
year ago. Throughout this crisis, many Americans have struggled to understand what public health
measures are the most effective and what should be done to help slow the spread of this disease.
Furthermore, some citizens in both the U.S. and other parts of the world have criticized many of the
public health measures that governments have put in place to try to control the spread of Covid-19.
Mandatory lockdowns, mask use, closing schools, and enforced social distancing have been especially
controversial in the U.S. This computer program seeks to simulate the pandemic given different levels
of various public health initiatives such as social distancing, travel limitations, and personal hygiene.
Having an easy-to-use program that can demonstrate the effects that these parameters have on the
spread of Covid-19 will allow people to better understand what should be done during this pandemic
and hopefully buy into some of these measures.

3. Solution description

This project was split into four important milestones in the proposal. The first milestone was to clearly
define the parameters for how this simulation will run. Next, a skeleton code was created that has the
desired baseline structure of the simulation. Next, a user interface was implemented so that the
program was easy to control and understand. Finally, visualization tools were added so that the user
could see the spread of Covid-19 in real time. Each milestone is explored further in this section in
order to create a comprehensive picture of the project.

Simulation Parameters and Data Collection

While no simulation is perfect, we can gather specific information about a virus to determine what the
main drivers of its spread will be and we can then use those parameters to create a model that will
hopefully mimic the results that we would observe for this virus in the real world under various
scenarios.

The first parameter in the simulation is the time step; this is the smallest increment of time that the
simulation will use to determine new infections and deaths. Having a timestep that is too small, will
create unnecessary calculations for the program and it will run slowly. However, a timestep that is
too large will not accurately model real world results. For Covid-19, the average time from infection

Page 4 of 13

to the onset of symptoms is 5.7 days [2]. Additionally, the average time from the initial contagious
period to no longer being contagious is 6 days [3]. This makes a time step of 6 days ideal for this
simulation. If a person becomes infected in one wave, the next wave he will be contagious, and the
wave after that he will have (hopefully) recovered. Currently there are no health measures that can be
taken by a group of people to alter this infectious period; as a result, the time step for this simulation
can not be altered by the user.

The lethality of Covid-19 can be hard to pinpoint as it seems to vary from population to population.
On average, it appears that approximately 3% of people who contract Covid-19 have a fatal outcome
[1]. Additionally, the fatality rate tends to balloon when the number of people infected begins to
overwhelm a population’s healthcare system. For this simulation, the fatality rate increases from 3%
to 10% if the number of people infected at any one time exceeds 25% of that group’s population; this
spike in fatality rate is meant to reflect that an infection rate of 25% would completely overwhelm the
hospitals in that region.

The transmission rate of a virus is its ability to spread from person to person. Covid-19, being an
airborne respiratory illness, has a high transmission rate. Studies have found that after close contact
with an infected person, around 53% of those in contact later tested positive [4]. Mask use, hand
washing, and personal hygiene are all factors that may be able to lower this transmission rate.
Therefore, transmission rate is a parameter that can be adjusted by the user of the simulation in order
to get an idea for how these factors influence the spread of disease. This factor is also one that should
be able to be adjusted while the simulation is running in order to reflect changes in policy that happen
during the pandemic.

The number of contacts a person has is another major factor for the spread of Covid-19. This can be
described as the number of “friends” a person interacts with on a weekly basis. A population that has
an average number of contacts that is high will have a very high potential to spread the disease
throughout the population. This parameter can be controlled by the user and is defined as the average
number of friends each person has in a specific group.

At the start of this pandemic, many nations started to rapidly close their borders in an attempt to stop
Covid-19 from entering their country. This is an important factor that should be investigated in the
simulation. An isolation parameter is defined that represents the fraction of people that travel from
one group to another during each timestep of the simulation.

The final parameters for the simulation that are unrelated directly to either the characteristics of the
virus or the public policies in place are the conditions used to run the simulation. These include the
population of each group being simulated, the number of groups being simulated, and the initial
number of infected people within each group. A skeleton code was created using these parameters.

Skeleton Code

This project was implemented in Python, there are several reasons for using an interpreted language
as opposed to a compiled language like C or C++. First, the main goal of this program was to visualize
the spread of Covid-19 in an easy-to-understand way. This is arguably more important than the speed
at which the program is run as long as the program can run sufficiently fast for reasonably large

Page 5 of 13

populations in order to keep the user’s interest. Python has many built in libraries for visualization and
graphical user interface (GUI) implementation that makes it ideal for making this type of program.
Additionally, this simulation is centered around creating groups of people in a simulation environment.
An object-oriented language is ideal for this structure because we can create many “person” objects
and place them into “group” objects, which can then be placed in a final “sim” object. This approach
has proven to make writing the code substantially less confusing.

The source code for this project is split into three files; group.py, main.py, and sim.py. Each code is
created to handle a specific part of the program. The general setup for a simulation is as follows. First,
a simulation object will be created with the parameters set by the user saved in its attributes. A group
object is then created for each group. A person object is created for each person in each group. Each
person is assigned a list of friends that creates a social network for the group. Figure 1 shows both the
structure of the simulation and the social network that is created in each group.

I I

Figure 1. Organization of objects in the simulation (left), and organization of people and friend
relationships (right). Dots represent people and lines represent social connections.

When the simulation increments forward one timestep, a function called wave() is called that updates
the simulation. First, it is determined which people in the groups will travel to a new group. Two
people are randomly selected, and the Boolean variables that define the two peoples infectiousness
status are switched. Next, new infections are identified by looking at each infected person’s friend list;
based on the transmissibility rate, it will be determined which of an infected person’s friends will be
infected. Additionally, if a person is recovering from infection, it will be determined if that person had
a fatal outcome. Finally, the counts of infected, recovered, and dead people are updated in each group
using a double nested for loop to iterate through each person to check their status.

Page 6 of 13

User Interface

Once the structure of the code was completed, a working graphical user interface (GUI) was created
so that the user could easily set the parameters for the simulation. This is done in the main file and the
python library tkinter was used. This library allows for the creation of ‘widgets’ that can be placed
onto a window that pops up when the program starts. Figure 2 shows the parameter settings window
that appears when the program starts.

¢

Default Pararneters | Start Simulation Restart Program | Social Distancing Level

: : : : 0
Customize Parameters | Simulate & Days Cuit Program |

Figure 2. Simulation startup Menu

The user initially has two options, “Default Parameters” and “Customize Parameters”. The default
parameters button allows the user to quickly start the simulation with parameters that are pre-
determined in order to show interesting behavior when run. The customize parameters will bring up a
new menu that allows the user to create his/her own groups to be run in the simulation. An example
of this is shown in Figure 3

7

Town_4 Enter Group Mame

1000 Enter Group Population

35 Enter chance of transmission (0-100) %
4 Enter number of friends per person

3 Enter number of initial infections in group

Create group Finish settings

Created new group: Town_1
Created new group: Town_2

Created new group: Town_3

Created new group: Town_4

Figure 3. Custom Parameters menu being used to create four groups

After the settings have been configured, the user can press start simulation to begin the simulation.
Once started, the user can increment the simulation six days at a time by pressing the “Simulate 6

Days” button. Buttons were also added to reset the simulation parameters at any time during the system
and to exit the program.

Visualization

A simulation is not especially useful if the results are not clearly displayed. There are two important
displays that allow the user to monitor the status of his population during the simulation. The first is a

Page 7 of 13

plot of currently infected, recovered, and dead people in the entire simulation plotted against time.
This plot was created using the python package matplotlib. The simulation object keeps a log of
infected, recovered, and dead people that is updated after each time step; therefore, plotting these data
was not especially difficult. A canvas widget was created using tkinter so that the plot could be
displayed in the same window as the options dialog. It was initially difficult to update this plot as the
simulation progressed. However, this issue was solved by creating an animation function “animate(i)”
that is called at a specified framerate “i”. This function clears the plot and replots the data every 100
ms to make a plot that seems to adjust and change in real time. This approach is not the most efficient
way to plot data, as clearing and replotting takes more time then adding a single point; however, |
found this to be the most straightforward way of implementing this plot after a substantial amount of
troubleshooting alternatives.

The second visualization that is shown to the user is a network of nodes and edges that represent the
people in a group and their social contacts. Initially, all the nodes are blue except the initially infected
people. Blue indicates that these people are susceptible to infection. When a person is infected, the
node will turn red. When they have recovered or died, their node will turn green or black, respectively.
This creates a unique way to see how the virus spreads throughout a population based on the social
connections that exist within the population. This plot is computationally intensive to generate and
becomes very cluttered (providing no real information) if there are more than 100 nodes. For this
reason, the node network that is displayed is only for the first group that is created and is only displayed
if the population is no more than 100 people. With the code fully functional, the next section discusses
some of its results and their implications.

4. Overview of results and demonstration of project

The purpose of this project was to visualize how each parameter in the simulation effects the spread
of disease. By running this simulation with different parameters and comparing outcomes, it became
clear which factors were the most important in terms of controlling a pandemic.

Herd immunity has been discussed a lot lately. One factor underlying herd immunity is the percent of
a population that must become immune to infection in order to stop further spread to susceptible
people. Figure 4 shows a simulation that demonstrated this idea well. The virus had completely died
out in this simulation and 20% of the population never became infected; they were protected by herd
immunity. This suggests that for the specific parameters used in this simulation, about 80% of a
population needs to become infected in order to effectively end the pandemic. If we extrapolate this
to the United States, currently there are around 16.5 million Covid-19 cases for a population of 328.2
million people. This means that around 5% of the population has become infected over the course of
a year. Without a vaccine, this suggests that the pandemic will continue for an additional 15 years
before herd immunity is achieved!

Page 8 of 13

Restart Program Social Distancing Level

mulation

Simulate 6 Days I Quit Program il D ay 0
Simulating 2 groups
10 areiytierd
Total Recovered
80 orDead -
A
Day: 96 D ay 30
Currently infected: 0 e
60 Tetalydea;: 9
Total Recovered = 80
40
Currently Infected
20 “
Total Dead Day 96

0 20 40 60 80 100
Day of Simulation

Figure 4. Simulation of a group with 100 people, 2 are initially infected. Each person has an average
of 3 friends. Transmissibility rate is set to 55%. The social network is displayed at day 0, 30, and 96
of simulation.

Closing connections between populations (for example, borders of countries) is something else that’s
been in the news. A related factor that could be explored using this simulation is how limiting the
entrance of new people into a group from other groups affects the spread of the disease. In order to
show the effect that group isolation has, a simulation was created with two groups. One smaller group
(group 1) has 1,000 people and starts with 30 people initially infected. The larger second group (group
2) has a population of 10,000 people, none of whom are infected. When there is no travel between the
two groups, the outcome is rather obvious. The virus spreads through group 1 very quickly and dies
out. However, if we set the isolation level to only 0.05% (a value that would be extremely hard to
enforce in the real world), we can see that once the virus enters group 2 it quickly spreads throughout
that group and further isolation has small influence on the spread. These two simulations are shown in
Figure 5.

10,000
Q
o
2 6,000
o
2,000
X X
0 50 100 150 0 50 100 150

Figure 5. Two simulations comparing isolation levels; 0% travel is on the left and 0.05% travel is on
the right.

Page 9 of 13

This result leads me to believe that the only benefit that isolating a group has in a pandemic is
additional time to prepare for the virus before it inevitably enters the population. Isolation is not
enough to completely avoid the virus, however, as it potentially only takes one infectious person to
enter that will cause the virus to spread.

The number of contacts a person has also had a substantial effect for how the pandemic develops. This

is shown by comparing two simulations of 10,000 people. The first simulation has 3 friends per person,
and the other has 8.

10,000
Recovered/Dead

6,000

People

Infected

Hospital Capacity

2,000
Dead i3

0 50 100 150 0 50 100 150
Figure 6. Simulation with 8 friends per person (left) and simulation with 3 friends per person (right)

There are a few important things to note in Figure 6. First, having more friends resulted in a far faster
infection rate. This is particularly bad because it means that everyone is getting sick at essentially the
same time, putting enormous strain on healthcare facilities. The total people that ended up becoming
infected is also higher, but not by a large margin. The main difference is the rate of spread. Because
the spread was slower for the more socially distanced group, they did not exceed the hospital capacity
for most of the outbreak, which resulted in a lower number of deaths.

The final parameter that was looked at was transmissibility. Recall that this parameter captures the
impact of a group’s mask use, hand washing, and personal hygiene. This was also the one parameter
that can be adjusted during a simulation in order to mimic social policies that might be put in place
because of high community spread. Figure 7 compares a group that has a constant transmissibility rate
to a group that turns their transmissibility up or down based on the current number of infections.

Page 10 of 13

10,000

Transmission
turned down

6,000

Transmission
N turned up
2,000 /

0 25 50 75 100 125 150 O 25 50 75 100 125 150

Figure 7. Simulation with constant transmission (left) vs. simulation where transmission is turned
down when infected people reaches 25% of population (right).

People

The results that were obtained by the simulation make me feel confident that the code works as desired.
It is a good visualization tool that helps people explore how different parameters affect the spread of
a virus during a pandemic. Throughout this process, | learned a lot about pandemics and their behaviors
(in addition to computer coding). Hopefully soon we will have a vaccine that will bring the susceptible
population down to levels that will eradicate this disease.

5. Deliverables:
Below is a list of the following deliverables for my final project.
- This report
- Adoxygen html (Doxygen HTML.zip) describing my code, submitted to Canvas
- Final Code in Git Repository
o In the Git repo there are my 3 source code files (main.py, group.py, and sim.py). To run
this code you should run the main file (python3 main.py).
o An environments file is also added that describes the dependencies required to run this
program (matplotlib and networkx).
= Note: | had trouble getting this to run through ubuntu. | fixed this issue with: (sudo
apt install python3-tk). I am not sure what the problem was but | guess tkinter may
not be downloaded into python by default when using ubuntu.
- Environment.yml file for running code

6. Use of ME459 knowledge

e Github repository maintenance (committing, pushing, cloning, etc.)

e Interpreted Languages (Python)

e Object Oriented Programming

e Doxygen commenting and HTML/Latex creation

e Debugging

e Virtual Environments

e Complexity analysis to increase execution speed (rearranging loops to improve spatial locality)
e Variable Types and Casting

e Common Programming algorithms

Page 11 of 13

e Local and global variable handling

Debugger Example

When testing my code, | initially found that when simulating two groups, one of which has no
infections, no matter how much travel occurred between the groups the group with no infections would
never become infected. My initial thought was that my travel function was not correctly switching the
infection status between the two traveling people. | used the Pycharm debugger to stop my travel
function at the point where the people are supposed to switch groups, as shown below.

Before: After:

self.groups[grl].people[pl].infected =

= SE nle infecte ool} False

It turned out that the infected status was correctly switching between two people in different groups
so this was not the problem. After stepping through the code further, | found that the problem occurred
in the updateCounts() function.

< El rou I:i X E|

In this function | was trying to speed up execution time by not running the for loops to recount
everyone’s status if nobody in the group was infected in the last wave. This results in a logic error
when a person who is infected travels into the group. The counts have not yet been updated so the
infLog list still thinks that nobody is infected and therefore it does not bother to check. This was solved
by setting the infLog of a group to 1 if they had no infection but an infectious person traveled into the

group.

7. Conclusions and Future Work

There are a few places where this code could improve. The biggest one is the speed of the simulation.
When the number of people exceeds approximately 20,000 people then the initialization slows
dramatically. Additionally, when the number of infected people increases the speed of the simulation
also slows down. This is because the checklinfections() for loop iterations continues to exponentially
increase. This issue is shown in Figure 8 which shows the computational time per step as a function

Page 12 of 13

of simulated time. The peaks in Figure 8 correspond directly to when the number of infections is very
high.

=]
(=}
©

Time per step [s]
© o o o o o
o (=] o o o o
w - (3] (=] ~ (=]

o
Q
¥

o
=)

o

(=}

5 10 15 20 25 30 35 40 45
Time Step

Figure 8. Time to increment simulation by one timestep vs timestep of simulation

Another area of improvement would be the ability to adjust the number of friends that each person has
while the simulation is running. A slider that the user could adjust that would immediately alter the
social network diagram to show either more or less connections would be very interesting and would
allow investigation into government mandated lockdowns.

Lastly, there are minor things in the display that should be improved upon. The plot that is displayed
to the user has no axis labels and numbers can occasionally be slightly cutoff. This was a consistent
struggle to fix as I could not find a reliable way to add labels that would fit onto the plot without having
them overlap.

Overall, I would say that this code does what I set out to accomplish.

References

[1] “United States Coronavirus: 15,232,774 Cases and 289,430 Deaths - Worldometer.”
https://www.worldometers.info/coronavirus/country/us/ (accessed Dec. 07, 2020).

[2] “Estimated Incubation Period of COVID-19,” American College of Cardiology.
http%3a%2f%2fwww.acc.org%?2flatest-in-cardiology%2fjournal-
scans%2f2020%2f05%2f11%2f15%2f18%2fthe-incubation-period-of-coronavirus-disease (accessed
Dec. 13, 2020).

[3] CDC, “Coronavirus Disease 2019 (COVID-19),” Centers for Disease Control and Prevention, Feb.
11, 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html (accessed Dec.
13, 2020).

[4] C. G. Grijalva, “Transmission of SARS-COV-2 Infections in Households — Tennessee and
Wisconsin, April-September 2020,” MMWR Morb. Mortal. WKkly. Rep., vol. 69, 2020, doi:
10.15585/mmwr.mm6944el.

Page 13 of 13

